Sunyaev-Zel'dovich Surveys, the South Pole Telescope (SPT), and Onwards

Bradford Benson (*University of Chicago*)

Outline

- 1. Science
 - The Sunyaev-Zel'dovich (SZ) Effect
 - Constraining Cosmology with SZ Cluster Surveys
- 2. The South Pole Telescope (SPT) Project
 - Description, Results, & Synergies with Other Surveys
- 3. Other SZ Surveys and Onwards

The Sunyaev-Zel'dovich (SZ) Effect

•1-2% of Cosmic Microwave Background (CMB) photons scatter off of hot intracluster gas to higher energy, this is the **Sunyaev-Zel'dovich (SZ) Effect**

•SZ surface brightness is redshift independent

Cosmology with Clusters of Galaxies

Cluster Abundance, dN/dz

$$\frac{dN}{d\Omega dz} = n(z) \frac{dV}{d\Omega dz}$$
Depends on:
Matter Power Spectrum, $P(k)$
Growth Rate of Structure, $D(z)$
Depends on:
Rate of Expansion, $H(z)$

For fixed Ω_{DE} and increasing w:

- 1. Less clusters at low redshift, due to decreased volume surveyed
- 2. More clusters at high redshift, due to decreased growth rate

Bradford Benson

SZ Cluster Survey Advantages

- 1) IC gas pressure is a "clean" mass estimator
- 2) Complete survey out to high redshift

~8 pct scatter in Mass vs Integrated Pressure Relation

Same range of X-ray surface brightness and SZ decrement in all three insets.

Requirements for a SZ Survey Experiment

Spatial Resolution

- 1' is well-matched to typical cluster size at these redshifts
- At 150 GHz this means you need a 8-10 meter dish

Mapping Speed

- (# of elements) / noise²
- At 150 GHz (from the ground), bolometers have reached photon background limit to sensitivity
- Typical SZ/CMB instruments have on the order of tens of pixels
 (e.g. QUAD = 31 pixels, Bolocam ~ 120, ...)

The South Pole Telescope (SPT)

Sub-millimeter Wavelength Telescope:

- 10 meter telescope (1' FWHM beam at 150 GHz)
- 20 microns RMS surface accuracy
- Off-axis Gregorian optics design
- Two levels of ground shielding
- 1 arc-second pointing
- Fast scanning (up to 4 deg/sec in azimuth)

1st Generation Camera:

- 1 sq. deg FOV
- ~1000 pixels
- Observe in 3+ bands between 90-220 GHz simultaneously with a modular focal plane

Funded by NSF

SPT Focal Plane

1 degree diameter (on sky)

- Modular design of SPT focal plane into 6 wedges is useful to allow multiple frequencies
- 1st year:
 - 2x 95 GHz, 3x 150 GHz, and
 1x 220 GHz wedges
- 2nd year:
 - 1x 95 GHz, 3x 150 GHz, and
 2x 220 GHz wedges
- Next season plan to add more 95
 GHz detectors to improve SZ
 mapping speed

SPT Observing Region

South Pole Telescope – SZ Survey:

- ~4000 sq. deg. Survey (2007-2010)
- South of -30° declination

What we have so far:

- BCS Fields: ~200 sq. deg down to ~0.7 mJy at 150 GHz, and ~2.8 mJy at 220 GHz per 1 arcmin beam
- •WMAP Fields: ~700 sq. deg, faster larger scans to calibrate off CMB for ~2 pct calibration
- •Targeted Clusters: Deep observations of ~25 known massive clusters with existing Xray data

SPT Collaborating Photometric Surveys

Stage I: Blanco Cosmology Survey (BCS)

- A 45 night program that began fall 2005 to survey 100 square deg (2.5 pct of SZ survey size) at Blanco 4m on Cerro Tololo
- http://cosmology.uiuc.edu/BCS (Mohr)

Stage II: Targeted Photo-z's

• PISCO (Magellan), Spitzer, ...

Stage III: Dark Energy Survey (DES)

- 5000 square deg G, R, I and Z bands
- 2005-2010: Construction of a new 3 square deg camera for the Blanco 4m
- 2010-2015: Survey Operations
- https://www.darkenergysurvey.org/

John Peoples, Director

Collaboration of: Fermilab, U Illinois, U Chicago, LBNL, CTIO/NOAO, Barcelona, UCL, Cambridge, Edinburgh, U Michigan, UPenn, Brazil

Blanco 4m on Cerro Tololo

Image credit: Roger Smith/NOAO/AURA/NSF

RA 5hr30min BCS Field

- Mapped with interleaved azimuth raster scans
- ~800 hours of observation
- 100 deg² ~17 uK CMB/arcmin pixel
- 40 deg² overlap with BCS

SZ Discovered Clusters

• The 4 most significant detections in the BCS overlap region

Staniszewski et al., astro-ph/0810.1578

- Brightest cluster is a known ROSAT cluster
- All 4 have optical confirmations
- Many more clusters in fields, but need:
 - optical confirmation
 - X-ray + lensing studies to understand mass calibration

Point Sources

- In ~800 hours of observations on ~100 deg^2, SPT 150 GHz flux limit is ~0.7 mJy
- Hundreds of point sources in 100 sq deg SPT Map
- 5-sigma flux limit of ~3.5
 mJy at 150 GHz, and 3-sigma
 flux limit of ~4.5 mJy at 220
 GHz
- Almost all dusty sources unidentified, likely SCUBAlike submm bright dusty galaxies at high redshift
- Future ALMA sources

Spectral Energy Density of a Dusty Galaxy

Bullet Cluster

13 hour SPT observation ~13 uK noise -> 50 sigma detection!

Chandra 140 hrs obs (Markevitch)

same scale as SPT image

Chandra 0.5 Msec image

Significant signal out to ~15 arcmin r_200 is ~8.5 arcmin for this cluster

T. Plagge et al, in prep

Other SPT Cluster Observations

SPT		J2000	J2000		LCDM, h=0.7
Hours	Name	RA	Dec	z	Lx(0.1-2.4)
Observed					(1e44 ergs/s)
12	A2744	00:14:19	-30:23:00	0.3066	12.92
6	RXJ0217	02:17:13	-52:44:49	0.3432	12.0
6	RXJ0220.9	02:20:57	-38:28:48	0.228	5.82
12	RXJ0232.2	02:32:17	-44:20:51	0.2836	9.65
6	A3084	03:04:04	-36:56:27	0.219	4.68
6	RXJ0336.3	03:36:16	-40:37:45	0.1729	5.3
6	A3292	04:49:57	-44:40:24	0.150	3.29
bcs + 6	RXJ0516	05:16:38	-54:30:51	0.2952	13.87
6	RXJ0528	05:28:56	-39:27:46	0.2839	13.12
12	RXJ0532	05:32:55.5	-37:01:28	0.2708	6.94
6	CLJ0542.8	05:42:50	-41:00:02	0.634	9.9
6	A3364	05:47:38	-31:52:25	0.148	4.67
6	MACSJ0553	05:53:27	-33:42:53	0.407	32.68 ^{bolo}
9	RXJ0638	06:38:46.5	-53:58:18	0.2266	10.62
6	A3404	06:45:29	-54:13:08	0.1644	7.360
7 (+ 6)	Bullet	06:58:31	-55:56:49	0.297	23.03
12 (+4)	MACS1931	19:31:49.6	-26:34:34	0.352	
6	RXJ2011	20:11:23	-57:25:39	0.279	7.23
9	A3667	20:12:24.3	-56:49:49	0.053	5.41
6	RXJ2031	20:31:52	-40:37:14	0.3416	12.04
15	MACS2046	20:46:00.5	-34:30:17	0.423	
6	RXJ2218.6	22:18:40	-38:53:51	0.141	3.78
6	A3888	22:34:31	-37:44:06	0.151	8.46
9 (+ 6)	AS1063	22:48:43.5	-44:31:44	0.348	30.78

- 24 known clusters detected with SPT
- Almost all have Chandra or XMM data
- Any lensing data? Nine in LoCuSS sample (Graham Smith et al.), which combines X-ray + lensing
- Optical velocity dispersions?
- Will be an interesting sample to study:
 - outer regions of clusters (gas mass fraction vs. radius, temperature vs radius)
 - gas & mass dynamics
 - peculiar velocities (dark flows?)

Other SZ Surveys

ACT:

- 6 m telescope in Chile
- 150, 220, 280 GHz
- Started regular operations in ~June 2008
- Plans to survey ~1000 sq deg

Planck:

- Launch: 2009
- Transfer to orbit: 3-4 months
- 2 full-sky surveys: 14 months
- Data release: + 2 years
- 9 bands between 30-850 GHz, allows CMB & SZ separation

Ref: Planck Blue Book

but low (9' - 5') resolution of 1.5 meter limits cluster sensitivity

- Deep, large, 1' resolution maps are now being made by SPT. Should have of order 1000 degrees mapped out in the next two years at 90, 150, and 220 GHz
- ACT and Planck are on the horizon as well
- Joint analyses with X-ray and lensing to study:
 - cluster masses
 - thermal evolution of IC gas
 - baryonic + dark matter dynamics
- Sub-mm and radio follow up of point sources:
 - star formation and dusty galaxy history
 - AGN evolution